Perceptron Learning of SAT
نویسندگان
چکیده
Boolean satisfiability (SAT) as a canonical NP-complete decision problem is one of the most important problems in computer science. In practice, real-world SAT sentences are drawn from a distribution that may result in efficient algorithms for their solution. Such SAT instances are likely to have shared characteristics and substructures. This work approaches the exploration of a family of SAT solvers as a learning problem. In particular, we relate polynomial time solvability of a SAT subset to a notion of margin between sentences mapped by a feature function into a Hilbert space. Provided this mapping is based on polynomial time computable statistics of a sentence, we show that the existance of a margin between these data points implies the existance of a polynomial time solver for that SAT subset based on the Davis-Putnam-Logemann-Loveland algorithm. Furthermore, we show that a simple perceptron-style learning rule will find an optimal SAT solver with a bounded number of training updates. We derive a linear time computable set of features and show analytically that margins exist for important polynomial special cases of SAT. Empirical results show an order of magnitude improvement over a state-of-the-art SAT solver on a hardware verification task.
منابع مشابه
A Study on Speaker Normalized MLP Features in LVCSR
Different normalization methods are applied in recent Large Vocabulary Continuous Speech Recognition Systems (LVCSR) to reduce the influence of speaker variability on the acoustic models. In this paper we investigate the use of Vocal Tract Length Normalization (VTLN) and Speaker Adaptive Training (SAT) in Multi Layer Perceptron (MLP) feature extraction on an English task. We achieve significant...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملOn speaker adaptive training of artificial neural networks
In the paper we present two techniques improving the recognition accuracy of multilayer perceptron neural networks (MLP ANN) by means of adopting Speaker Adaptive Training. The use of the MLP ANN, usually in combination with the TRAPS parametrization, includes applications in speech recognition tasks, discriminative features production for GMM-HMM and other. In the first SAT experiments, we use...
متن کاملOn-line learning through simple perceptron learning with a margin
We analyze a learning method that uses a margin kappa a la Gardner for simple perceptron learning. This method corresponds to the perceptron learning when kappa = 0 and to the Hebbian learning when kappa = infinity. Nevertheless, we found that the generalization ability of the method was superior to that of the perceptron and the Hebbian methods at an early stage of learning. We analyzed the as...
متن کامل